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Globally, pests (invertebrates, 
vertebrates, pathogens, weeds) can cause 
estimated annual losses of between 20- 
40%, but higher losses are 
disproportionately experienced by many 
low-income countries as agriculture is the 
mainstay of the majority of the people and 
of national economies. Pests pose a major 
barrier to these countries to meet the aims 
of the UN Sustainable Development Goals, 
particularly SDG2 “End hunger, achieve food 

security and improved nutrition and 
promote sustainable agriculture”. However, 
solutions, in the form of pest risk alert 
systems coupled with major advances in 
technology are now providing opportunities 
to overcome this barrier in low-income 
countries. In this paper we review these 
systems and the advances in data 
availability, management and modelling and 
communication technology and illustrate 
how these can provide new and novel 
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solutions for the development of agricultural 
pest and disease early warning and risk 
mapping systems and contribute to 
improved food systems in low-income 
countries. In conclusion, we identify key 
areas for the UNFSS that will help guide 
governments to engage with these 
developments. 

Globally, pests (invertebrates, 
vertebrates, pathogens, weeds) remain a 
major barrier to crop production with annual 
losses estimated at between 20- 40% (FAO, 
2019). The impact of pests is particularly 
acute in many low-income countries as 
agriculture is the mainstay of the majority of 
the people and also of the national 
economies (Perrings, 2007; Pratt et al., 2018; 
Wiggins et al., 2010). Additionally, climate 
change is predicted to increase the 
likelihood, frequency, and impact of pests in 
the future, resulting in increased crop losses 
thus causing damage to the economy of low-
income countries. For instance, Deutsch et al 
(2018) predicted that global yield losses of 
major grains will increase by 10-25% per 
degree of global mean surface warming. The 
vulnerabilities of these countries are further 
exacerbated because of the small size of 
farms which often witness outbreak of 
transboundary and /or new invasive pests 
(Early et al., 2016) and multiple indigenous 
pests (Constantine et al., 2021).  

A number of factors such as weak 
phytosanitary systems and inadequate 
human, financial and infrastructure capacity 
are exacerbating the problem caused by 
these pests. There are weak linkages 
between research and national systems, 
resulting in gaps in effectively translating 
research into policy for their management. 

Significant progress has been made in the 
last decade in providing means for access to 
important knowledge about the 
identification of important pest groups such 
as arthropods, plant pathogens and weeds 
and their controls, both at a national and 
smallholder farmer levels (e.g. the global 
Plantwise programme (www.plantwise.org) 
and PlantVillage 
(https://plantvillage.psu.edu/)) but 
information about pests is generally not 
accessed by users until a pest has reached a 
damaging stage; for example, in the case of 
farmers, this is when pest symptoms 
become most apparent. Thus, crop yield 
losses remain high (Pratt et al., 2017). 
Additionally, existing knowledge on how to 
manage pest and disease incursions has also 
become more difficult to apply given the 
changing backdrop of weather patterns and 
the effect this has on the phenology of pest 
and disease outbreaks (Castex et al., 2019; 
Chidawanyika et al. 2019) or the range 
expansion of invasive alien species (Kalnicky 
et al., 2019). In all, pests pose a major barrier 
to these countries to meet the aims of the 
UN Sustainable Development Goals, 
particularly SDG2 “End hunger, achieve food 
security and improved nutrition and 
promote sustainable agriculture” but all the 
SDGs depend to some extent on the delivery 
of improved food systems. However, 
solutions, in the form of pest risk alert 
systems, do exist that address this barrier 
and major advances in technology are now 
providing opportunities to apply these in 
low-income countries. 

It is well established in Integrated Pest 
Management (IPM) that ‘prevention is far 
more effective than cure’ (Barzman et al., 
2015; Pretty and Bharucha, 2015) and this 
critical tenet of IPM is key to reducing losses 
from pests and improving crop yields. 

https://plantvillage.psu.edu/
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Although preventative measures emphasize 
aspects such as the use of healthy seed or 
maintaining healthy soil etc, the colonization 
by multiple indigenous pests or even the 
invasion of new pests in smallholder farms 
within a cropping season is inevitable in 
most regions. Hence, the provision of timely 
pest risk prediction information through risk 
mapping or early warning systems is of 
paramount importance. Active 
communication of real time information 
enables intelligent mobilization of resources 
by national governments, other actors in the 
food value chains and/or early action by 
farmers to prevent pest populations from 
reaching economically damaging levels.  

The development of national pest risk 
assessment and early warning systems can 
be complex though. It requires the 
combining of expertise of different actors, 
well beyond those in pest modelling and 
pest management alone (Magarey and 
Sutton, 2007; FAO 2007). Many advances 
have been made in pest modelling and 
several types of model are now available for 
pest risk mapping and early warning 
(Orlandini et al., 2017; Tonnang, et al., 2017). 
However, equally important is the 
availability and access to suitable input data 
sources (e.g., pest data, weather data) to 
build or drive such systems, a deep 
understanding of farmer decision making, 
and efficient communication means to 
deliver risk information to end users; for the 
last, in the case of farmers, this involves 
large numbers of people spread over vast 
areas. As a result, pest risk systems have 
mostly been developed in high income 
countries and only applied in low-income 
countries for a handful of significant pests 
(e.g., transboundary pests in Africa, see Box 
1) and for import and export market access, 
but this situation is now changing. Recent 

innovations and advances in data availability 
(e.g., earth observation (EO) data, 
meteorological data), data architectures, 
data management workflows, computing 
power and communications technology has 
allowed for increasingly sophisticated risk 
assessment and decision support systems to 
be developed and extended to end users. In 
particular, there has been a developing 
interest in the use of weather and 
environmental data derived from EO sources 
as such data are available for large areas 
(Marques da Silva et al., 2015). EO data have 
already proved to be useful in broad scale 
alert systems such as Global Forest Watch 
(GFW), the Famine Early Warning Systems 
Network (FEWS NET) and the Group on Earth 
Observations Global Agricultural Monitoring 
Initiative (GEOGLAM). 

These advances in data availability and 
data management may now be combined 
with advances made in the field of extension 
and have the opportunity to make significant 
improvements in the field of pest prediction 
and subsequent extension of messages. 
Increasing access to mobile phone 
technology (World Bank, 2019) along with 
the emergence of ICT-based advisory 
extension services has allowed the extension 
sector to disseminate advice through 
multiple complementary communication 
channels such as Short Message Services 
(SMS) and Unstructured Supplementary 
Service Data (USDD) on broader scales than 
previously possible (Thakur et al., 2016, 
Tambo et al., 2019). 

Here we discuss how these advances, in 
terms of data availability, management and 
modelling and communication technology 
have provided new and novel solutions for 
the development of agricultural pest and 
disease early warning and risk mapping 
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systems in low-income countries. In 
particular, we explore how this provides 
opportunities to improve food systems and 
identify key areas for the UNFSS that will 
help guide governments engage with these 
developments. 

Several pest risk prediction systems are 

now in place or in development for low-

income countries which forewarn of within 

season pest and disease incursions. These 

systems provide alerts about near-future 

potential geographic hotpots of 

transboundary pests or build-up of local 

pests which can be used at any scale 

(national, regional and local) for warning of 

potential pest outbreaks.  

Developments of these systems with a 

wide outreach have been possible with the 

onset of increasingly accessible high-quality 

data with high spatial resolution derived 

from EO and meteorological sources used to 

drive the models, and the collation and 

generation of field and laboratory data to 

build, train and test the models. 

 

Access to datasets and data Management 
 

Through numerous projects an 
immense number of datasets on occurrence, 
abundance, and prevalence of pests, have 
been collected across many countries. 
However, these data remain scattered, are 
not widely accessed, and used, and no 
mechanisms exist for bringing these datasets 
together enabling sharing for multiple uses. 
Data are heterogeneous owing to the 
diversity of their sources, differences in 

objectives for collection, and multiple 
storage and retrieval formats however, 
recently, with the advancement in data 
collection and collation instruments like 
crowdsourcing, EO and geospatial tools, and 
cross-cutting analytics like artificial 
intelligence (AI) and internet of things (IoT), 
the development of cloud-based platforms 
(e.g. ‘data hubs’) and mobile apps for real-
time pest detection and risk profiling is 
highly possible. This enables the integration 
of historical and ongoing collections of pests 
and associated natural enemy data from 
disparate sources as its centerpiece and may 
act as repositories which may be utilized to 
build and validate pest risk prediction 
systems.  

With the availability of such diverse data 
sources several initiatives have been 
underway to combine and utilize these data 
for the development of pest risk or other 
applications. For example, icipe through the 
data management, modelling, and geo-
information (DMMG) unit is establishing a 
state-of-art data management workflow 
(DMWf) and advancing the use of ‘big data’ 
and cloud-based cross-cutting processing 
technologies that allow harmonized storage 
and analysis of petabytes of various data 
types. This includes observational, 
experimental, simulation and derived 
datasets. The observational data are 
commonly collected through open-ended 
survey, observation and the use of 
equipment and devices to monitor and 
record information. Experimental data are 
obtained through functional involvement by 
the data collector that create and gauge the 
change to establish causal relationships. 
Simulation data are obtained through 
mimicking known processes and applying 
computer-based methods to reproduce, 
while derived data are the result of the 
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application of formulae to transform the 
information. The DMWf provides a 
collaborative framework with cooperation 
between data scientists and information 
communication technology (ICT) experts.  

With relatively more complex datasets, 
the opportunity for more sophisticated data 
handling methods has emerged. AI allows 
the exploration and utilization of large 
datasets and predictors, the expansion of 
assessments beyond binary outcomes, and 
takes into account the costs of different 
types of forecasting errors to generate 
improved and accurate knowledge for 
decision making with feedback and 
accountability in the context of IPM. 
Approaches such as machine learning (ML) 
and deep learning (DL) enable the 
characterization, discrimination, 
classification, prediction, forecast and 
utilization of existing knowledge in pest 
management for appropriate interventions. 

  
Improved access to Earth Observation and 
meteorological data  
 

EO data are complex and require 
specialised human and technical capacity to 
process and manipulate the source data into 
compatible formats for analysis which can 
often be lacking in developing countries and 
organisations. Space agencies are leaders in 
the use of EO data and are increasingly 
driving initiatives to make data more widely 
accessible and standardised to require less 
processing (O’Connor et al., 2020). One such 
initiative is the Group on Earth Observations 
(GEO), an intergovernmental partnership 
developed to promote accessibility and the 
subsequent use of EO. Key goals of GEO are 
to promote the use of open access and 
sustainable data sharing to support 

research, improved decision making and 
therefore benefit agricultural stakeholders.  

Increased collaboration between EO 
and biological pest risk modelling experts 
and cutting-edge actors in extension of 
information have allowed these data 
sources to be utilised at a broad spatial scale 
to benefit those in receipt of early warning 
information. Data derived from EO sources 
can provide a consistent stream of 
measurements at regular time intervals with 
global coverage. These data can include 
various vegetation indices which may be 
related to plant biomass or vigor (i.e. 
Normalized Difference Vegetation Index: 
NDVI), or used within reanalysis datasets to 
give a broad range of atmospheric, land and 
oceanic climate variables (i.e. ERA5 ECMWF 
dataset 
https://www.ecmwf.int/en/forecasts/datas
ets/reanalysis-datasets/era5). The quality, 
accuracy and availability of these data are 
increasing with each new space program 
(ESA,2020).  

Well established vegetation proxies, 
such as the NDVI have been used effectively 
by the FAO since 2010 to measure the 
amount of ‘green area’ to monitor potential 
locust habitat recession and growth (see box 
1). These data have helped direct local teams 
on the ground to survey localities at higher 
risk of locust population build up and thus 
help direct monitoring and control resource 
(Renier et al. 2015). Recently, data from the 
European Space Agency (ESA) have been 
used to classify different tree species and 
crop types (Persson et al., 2018, Van Tricht 
et al., 2018) and now such data are being 
used to monitor agricultural weed problems 
such as Striga or ‘witchweed’ in Kenya 
(Mudereri et al., 2020) and Parthenium 
hysterophorus or ‘famine weed’ in Africa and 
Asia. These weeds can be successfully 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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mapped using EO technology (Kganyago et 
al., 2017, CABI, 2021) and species-level 
mapping solutions can offer great benefits to 
policy makers, who with knowledge of a 
weed’s distribution at a national scale can 
implement suitable management programs.  

High quality data feeds of 
meteorological observations are essential as 
broadscale modelling approaches such as 
those used in pest risk prediction systems 
rely on an accurate estimation of localised 
conditions like temperature, humidity and 
rainfall (Magarey, 2005). Mechanistic or 
deductive models use detailed knowledge of 
the pest/disease biology to predict the 
response of the organism to a specific 
climatic driver (Venette, 2010, Donatelli et al 
2017), therefore access to accurate, high 
spatial and temporal resolution datasets is 
essential for the correct estimation of insect 
and disease outbreaks. In the recent past, 
weather data feeds for early warning 
systems have used observations from 
meteorological stations either set up as 
regional networks or farmer owned stations 
(Gleason 2008, Magarey et al 2001, 
Cressman, 2016).  However, networks 
require funds for their upkeep and coverage 
can be geographically unrepresentative of 
the needs of a study or altogether limited 
(Colston et al. 2018).  Climate data products 
derived from EO sources and reanalysis 
datasets have the potential to overcome 
these issues by providing complete coverage 
at good spatial and temporal resolutions and 
can offer a wider range of variables which 
may be applicable to modelling needs 
(Colston et al 2018). Improved access to 
sophisticated weather models such as the 
Unified Model (a numerical weather 
prediction model) available from the UK Met 
office have also contributed to the 
development of disease early warning 

systems. Recent advances in the availability 
and access to these data have advanced the 
capabilities of models to deliver near real 
time information. This increasing amount 
and accessibility of data from varied sources 
offers great opportunities to inform 
agricultural stakeholders to make better 
decisions when it comes to plant health 
challenges, and thus moving towards 
reducing crop losses as outlined in SDG 2.  
Recent projects such as PRISE (Pest Risk 
Information Service) project funded by the 
UK Space Agency (UKSA), and a near real 
time early warning system to predict future 
potential hotspots of two wheat diseases in 
Ethiopia (Allen-Sader et al 2019) have 
utilised access to these improved data 
sources for the purpose of pest and disease 
early warning systems. Both systems have 
extended messages to relevant stakeholders 
(governments, farmers, extension workers) 
in order to inform better management 
decisions with the ultimate aim to reduce 
crop losses.  

 
Validation of EO data and models 

 
Pest and disease risk prediction models 

driven using EO data inputs require field data 
for testing and validating species incidence 
and development. Historically, data 
collection in pest early warning systems 
has been limited by ground surveys which 
may fail as a result of political unrest, border 
disputes, and inaccessible terrain or can be 
limited by funds to generate these data, 
however although detailed controlled 
studies remain vital for testing EO and pest 
models, there are now opportunities to 
collect supporting data from a much larger 
source. Increase in access to digital 
communication technology (GSMA, 2020) 
enables data to be collected directly from 
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farmers and to enrich early warning systems. 
This citizen science approach is adapting to 
new technologies that smartphones provide 
(GPS, digital cameras, internet connectivity). 
Many efforts are also ongoing to build AI 
based tools (applications and sensors) for 
pest and disease detection and identification 
through image processing 
(www.plantvillage.psu.edu ; 
https://www.inaturalist.org/home) which 
may be used for in field diagnostics of pests 
and diseases or to assess local pest/disease 
pressure. The collation of accurate, or in 
terms of iNaturalist “research grade” 
datasets (Ueda, 2021) relating to pest 
presence may contribute to the build, 

calibration and validation of early warning 
models. There is a growing societal 
acceptance of mass participation projects 
and advances in statistical approaches allow 
these data to be analysed in a less-
structured way (Pocock et al., 2017). In order 
to be sustainable, these systems need to 
consider the incentives and motivations for 
users to contribute data. This surveillance 
method contributes vital observations in 
support of national and international 
programs, detecting pest incidence outside 
of formal research studies, extension 
services, border control checks and the work 
of plant protection organisations (Brown et 
al., 2020).

 

 

http://www.plantvillage.psu.edu/
https://www.inaturalist.org/home
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Rolling-out a cost-effective surveillance and early warning system to manage the acute desert locust 
crisis. 

The desert locust, Schistocerca gregaria (Orthoptera:Acrididae) is an eruptive, transboundary pest which 
affects Africa and parts of Asia. Under certain conditions, the locust forms large swarms which affect 
large geographies and severely impact food production. Given the relationship between local 
environmental conditions, abundance of vegetation and locust biology, it is possible to use state of the 
art approaches to collect data on locust presence, monitor movement, model the potential spatial extent 
of the locusts and assess crop damage to produce a dynamic and reactive response to locust outbreaks. 
In addition, schemes such as the FAO Desert Locust Information Service (DLIS) are able to forewarn of 
potential conditions which may lead to the formation of swarms, thus preventing future swarms. Below 
are the ways in which technology and data should be utilized in frontline countries in response to the S. 
gregaria outbreak 2019-2021.  

Activity Example 

Monitoring presence 
of populations 

 Innovative digital tools like smart phone Apps (e.g., e-locust3M), as 
means of crowdsourcing, for real-time desert locust data collections, 
tracking and monitoring the spread of the pest.  

 High-resolution remote sensing systems mounted on unmanned aerial 
vehicles (UAV), i.e., drones, for timely desert locust surveillance and 
monitoring in remote and/ or inaccessible areas. 

Monitoring of 
habitats/potential 
habitats 

 Use of newly launched earth observation (EO) tools (e.g., satellite-
based vegetation coverage, wind speed/ direction and soil moisture) 
of relatively better spatial and temporal resolutions to monitor desert 
locust habitats. 

Monitoring of 
movement  

 Ground-based radar systems to track and monitor desert locust 
breeding sites and hoppers migrations. 

Collation of data  Harmonize and standardize the existing national and centralized open-
source desert locust data systems/ platforms to receive and store ‘big 
data’ transmitted from crowdsourcing tools and drones.  

Early warning  Develop desert locust early warning and early action platforms using 
combinations of above-mentioned tools, machine learning (ML) and 
artificial intelligence (AI) algorithms. 

Future 
situations/scenarios 

 Assess vegetation and crop damage due to desert locust using long-
term EO data, ML and AI algorithms.     

 Use of historical long-term (e.g., 30 years) satellite-based climate data 
and AI algorithms to assess the impacts of climate change on desert 
locust occurrence and forecast future desert locust outbreaks weeks 
and months in advance to enhance targeted and effective 
interventions  
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The key aim of pest risk prediction 

systems should be to communicate risks and 
mitigation strategies to those who need the 
information most, with the aim to reduce 
potential losses, and allow time for 
sustainable interventions to be made. Such 
extension messaging should consider the 
technological capabilities of the end user. 
Rapid large-scale investment in 
telecommunication and the subsequent 
reduced cost of mobile phones and internet 
connectivity has resulted in the widespread 
accessibility of mobile phones across Africa 
and Asia including its most rural areas 
(World Bank, 2019) with an estimated 34% 
of the surveyed population owning a 
smartphone in Kenya, and 53% owning an 
older device without internet connectivity 
(Krell et al 2020).  

As a result of the increase in mobile 
phone ownership, ICT-based advisory 
extension services have evolved to use 
communication channels such as SMS and 
USDD. With the direct to farmer and local 
language adoption capabilities of SMS, it is 
considered the most impactful single 
communication method in terms of 
improving farmer knowledge and practice 
changes in Sub Saharan Africa (Silvestri et al 
2020). A recent example is an initiative set 
up in 2018 through collaboration between 
Kenya’s Ministry of Agriculture, Livestock, 
Fisheries and Cooperatives (MoALFC) and 
Precision Agriculture and Development 
(PAD) to disseminate advisory messages 
relating to Fall Armyworm (Spodoptera 
frugiperda) (Bakirdjian, 2020). The initiative 
has grown to provide actionable advice for 

ten crops, and has demonstrated broadscale 
uptake by reaching over half a million 
farmers, and in an additional pilot study on 
Fall armyworm, in collaboration with PRISE, 
59% of 6000 farmers who received timely 
SMS pest alert warnings self-reported 
changing their management practices with 
positive outcomes (Mbugua et al., 
2021).  Similar programmes across Africa 
and India showed a 4% average yield gain 
has been associated with digital agriculture 
programs, demonstrating a positive impact 
on livelihoods (Fabregas et al., 2019). This 
can be achieved at significantly lower costs 
compared with traditional agricultural 
advisory services.  Estimates show the cost 
per farmer reached by SMS services to be 
between 28 and 122 times cheaper per year 
compared to funding in person farmer field 
days (Low and Thiele., 2020; Quizon et al., 
2001; Ricker-Gilbert et al., 2008). An 
integrated approach including in person 
farmer visits, farmer field days and digital 
advisory services can offer more sustainable 
and effective extension. 

   

 
The bringing together state of the art 

advances in data availability, resolution, 
management and architecture along with 
new extension approaches that can deliver 
rapid and timely information, stands to 
make real changes to how pest risk can be 
communicated to end users in a timely way. 
The resulting synergy in these individual 
improvements can be combined to result in 
real gains in terms of yield on the ground and 
make headway towards the sustainable 
development goals such as SDG2. To keep 
momentum of the synergy of these 
approaches, there are several aspects which 
could be considered in the near future.  
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The collation and curation of data from 
disparate sources is key to being able to 
drive the build and validation of pest risk 
models and to exploit opportunities from 
the ‘big data’ and machine learning 
approaches. Data should be published 
openly (when possible) following FAIR 
principles, so that data are findable, 
accessible, interoperable and reusable. 
Openly accessible data can be shared 
through common interactive web platforms 
such as the Global Biodiversity Information 
Facility (GBIF) or institutional repositories 
such as those hosted by CABI, FAO or IITA. 
This will bridge the data gap in national, 
regional and local surveillance and improve 
data systems, linkage and sharing of pest 
data. Overall, the modelling platforms 
themselves can serve as means of 
communication and networking. It is 
important to ensure that these early warning 
and monitoring systems are truly sustainable 
(self-managing and self-funding) in the long-
term, and public-private partnerships will be 
key in ensuring this. Moreover, projects 
should ensure that the data and related 
materials, both digital and non-digital, 
should be accompanied by proper metadata 
and documentation in a way that facilitates 
the verification, replication and, if possible, 
reuse and remix of the data. 

The exploitation and interpretation of 
‘big data’ can be used to develop geospatial 
cloud-based tools and mobile apps that can 
be operationally utilized for ‘real-time’ 
insect and weed surveillance, monitoring 
and forecasting. To do this, a complete, 
accurate and reliable DMWf is required with 
advanced skills in common data models 
(CDM), data warehouse and repository, 
modelling methods and analytics including 
ML, AI, design thinking, system thinking, 
system dynamics and computer vision 

algorithms. This information can be used to 
better learn, adapt and transform risk into 
knowledge to change practice. For instance, 
applying AI on a CDM extract, could uncover 
hidden patterns, unknown correlations, 
trends, preferences, and other information 
that can help stakeholders making better 
and more informed decisions for the target 
insect pests and weeds. AI may be utilised 
for the optimisation of spatial positioning of 
pest traps which auto-disseminate 
sustainable interventions such as 
biopesticides (Guimapi et al. 2019). 

Global environmental monitoring 
platforms provide portals for policy and 
national and regional decision makers to 
view datasets and reports, however there is 
now an opportunity to bring early warning to 
a farmer level.  Advances in digital 
technology have demonstrated great 
opportunities to disseminate data to local 
scales and communicate this information to 
aid decisions made in the field. To achieve 
greater impact, these large datasets must be 
turned into timely information which can 
support agricultural decision making at a 
local scale, to avoid preventable losses.  To 
be effective, pest early warning system 
outputs must reach the farmer in the form of 
actionable advice. In order to effectively 
manage pest and diseases, farmers need 
timely warnings on taking preventative 
actions, advice of when to prepare and stock 
plant protection products, and alerts on the 
optimum times to monitor their crops for 
particular problems and in order to act. The 
combination of this improved extension with 
the availability of high quality, high temporal 
and spatial resolution datasets which can 
drive models within pest risk prediction 
systems is opening up opportunities to 
extend the outputs of models to broader 
geographical audiences and reach those who 

https://ckan.cabi.org/data
http://www.fao.org/faostat/en/#data
http://data.iita.org/
https://www.sciencedirect.com/science/article/abs/pii/S1476945X19300923#!
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need the information most. There is also an 
opportunity to combine early warning model 
outputs with models relating to 
management practices. Research projects 
investigating the estimated time to kill of 
traditionally slower acting biopesticides, 
combined with information of pest 
phenology can lead to the optimization of 
the timing of application of more sustainable 
interventions such as entomopathogenic 
fungi (CABI, 2021). 

For smallholder farmers and rural 
communities, the uptake of new digital 
solutions can often be limited by access to 
smartphones and other mobile tools, 
technological literacy, and willingness to 
change farming practices, many of which can 
be linked to gender and wealth (World Bank, 
2019). As such, the diversity of target users’ 
needs to be incorporated into the 
development and rollout of new services, 
with users taking on different roles which 
may not require high-level digital literacy. 
Numerous studies have agreed with the 
statement that digital extension will not 
replace face-to-face and more traditional 
advisory practices and therefore, new 
services need to take a more user-centred 
approach to support smallholder decision 
making (Steinke et al., 2020). 

Looking to the future, for the successful 
uptake of the pest risk prediction systems 
there needs to be a sufficient level of 
multidisciplinary involvement across the 
plant health sector, from governments and 
policymakers to extension services and 
smallholder farmers (Winarto, 2018). The 
adoption of novel technologies into existing 
plant health services needs to be taken up at 
a national level, with the ability to be 
disaggregated across regional and local 
platforms. National-level uptake or 

endorsement of early warning pest services 
could potentially benefit existing pest 
monitoring and plant health systems, 
notably in low-income countries by 
supporting the sharing of knowledge across 
boundaries and improving decision making, 
resulting in improved food security and 
farmer incomes (Rivera and Alex, 2004. 
Chapman and Tripp, 2003). 

For the long-term sustainability of early 
warning systems, the technological 
infrastructure and capabilities that are 
available in western countries need to be 
made accessible to low-income countries. 
Capacity building for key actors, 
organisations and services in the plant 
health system is an integral part of 
promoting the uptake and success of such 
innovations which incorporate EO data and 
the use of models. Sufficient training and 
support are required to promote the 
adoption of novel systems into national, 
regional and local early warning 
dissemination services. 

If digital-based technologies of any 
theme are to create sustainable lasting 
impacts on farmers and crop health systems, 
policymakers need to shift to a more 
inclusive digital understanding and 
acceptance (Steinke et al., 2020). 
Governments, private sector, development 
partners and donors can promote successful 
digital services through increased 
investment rather than short-term projects, 
with more focus on capacity building and 
user-centred design processes. For example, 
governments may seek to partner with 
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when incentives align, including commercial 
terms, data privacy and ownership rights 
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always require investment, but with an 
extensive portfolio of existing technologies 
and services in the agricultural advisory 
sector, it is apparent that novel applications 
must be applied under collaborative, cross-
cutting processes. 
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